

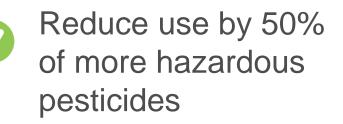
Spraying pesticides by drones in the EU? – ongoing research and regulatory works

CAPIGI 2023 Bots, Boots and Business 09 May 2023 Eric Liégeois,

EU Commission, Unit SANTE E.4

Content of the presentation

- 1. Setting the scene political context
- 2. Pesticides Application Equipment in EU
- **3.** EU Regulatory Framework for Pesticides : requirements, risk assessment/management, protection goals.
- 4. Roles of digital and precision farming in plant protection
- 5. Place of drones in the EU regulatory context: need for data, modelisation, standards, operating conditions...
- 6. Conclusions

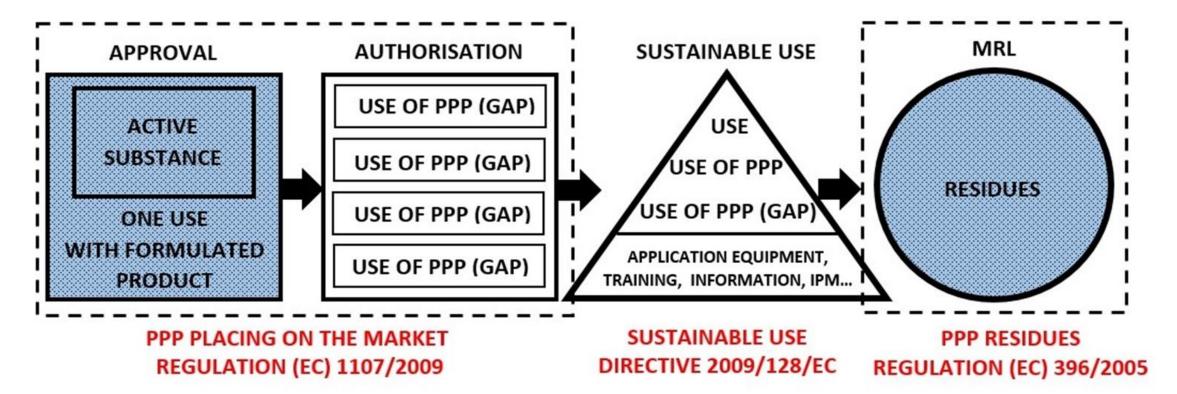


1. Farm to Fork: Pesticide reduction targets by 2030

Reduce by 50% the overall use and risk of chemical pesticides

2. Pesticides Application Equipments (PAE) in use in EU (source SPISE 8, May 2023)

2. PAE in use in the EU...


- Mainly boom sprayer for arable crops
- Mainly air-assisted for vertical crops
- Mainly lance sprayer in green- and glass-houses
- ..technically evolving...

... from this kind of "machines"... => ... to digital and precision farming

3. EU Regulatory framework for pesticides

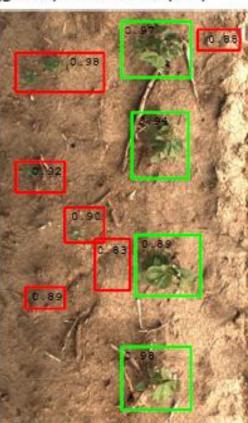
Regulated at EU level

Regulated at Member State level

4. Which role Digital Tools can play in this regulatory context?

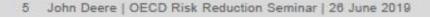
- Get more (easily) general information about plant protection, farming practices via on-line training, machines/devices, on-line tutorials, sharing knowledge and networking
- Get more **specific information** about IPM schemes (ex. IPM-toolbox) for a given crop
- Make use of decision-making tools
- Find **specific information about products** to be used <u>electronic label</u>: conditions of use, risks, risks mitigation....

4. Which role Digital Tools can play for the PPP users? (2)


- During use: Connectivity of the pesticides application equipment with:
 - Forecast systems (wheather, pest intensity, crop stage)
 - Geolocalisation, field mapping, canopy scanning, etc...
 - Precision application software
- After use: reporting (record-keeping) :
 - Data transfer to 'log-book', available to authorities
 - Performance assessment (application rate, economics,...)

4. Digital-Precision Technologies – ex. : sensor-piloted spraying (3)

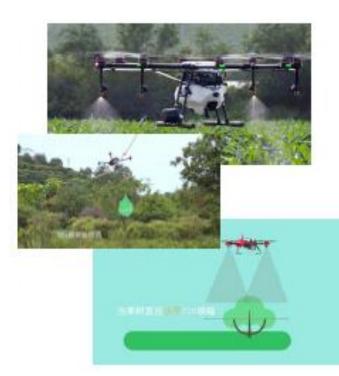
Sense & Decide: Blue River's deep learning process identifies subtle differences between crops (green) and weeds (red)



Act: Only weeds are sprayed and not the crop

How to consider such innovative techniques in the regulatory risk assessment and decision making?

- Strengths
- Reduced chemical usage
 - 50-90% reduction
- Differentiation of target
- Utilization of non selective herbicide in non gmo crop
- No preliminary work required



And what about....

Drones ?

Capacity? Efficiency? Precision? Safety for the operators? Safety for the environment? Economics?

5. Place of drones in the EU regulatory context

Sustainable Use Directive prohibits application of Pesticides by aerial spraying, so...

...with exemptions (derogation) : ex. slopy vineyards (here in CH)

5. Place of drones in the EU regulatory context (2) What the risk assessors-regulators would need?

Support from OECD – International Task Force on 'unmanned Aerial Pesticide Application System'

- Focus on Spray Drift, Crop Residue, Operator Exposure:
 - Off-site movement GLP study protocol & trials (ongoing)
 - Validation of exposure models drift, operators/workers/by-standers (not started)
 - Standardisation of drones (benchmark, typology,...)
 - Standard Operating Procedures for mixing/loading, piloting, cleaning,...(ongoing)
 - Best practices guidance (ongoing)
 - Field crop residue study (comparison with ground operated PAE applications) (ongoing)

EU sponsored - research projects - ex. Phytodron

6. Conclusions

- EU regulatory framework for pesticides : strictest in the world
- Digital tools new perspectives for prevention of use of pesticides, info exchange and record-keeping of PPP used.
- Precision techniques new perspectives to apply where/when/how needed, hence potential for reduction of use and risks
- But uptake of new techniques such as application by drones would require first:
 - Adaptation of risk assessment methodologies (data, field tests, modelisation,...)
 - Evidence for effectiveness to be integrated in regulatory process of PPP authorisation
 - Investment for farmers (durability !)
 - Training of all actors (SOP)
 - Protection of data owned by users

•

Time horizon for spraying pesticides with drones : ??

• Except for this purely insect killing drones...using mechanics only

Pats Indoor Drone Solutions

"A bat-like drone killing a moth in greenhouse"

Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide xx: element concerned, source: e.g. Fotolia.com; Slide xx: element concerned, source: e.g. iStock.com

Keep in touch

ec.europa.eu/

europa.eu/

@EU_Commission

M

@EuropeanCommission

European Commission

europeancommission

@EuropeanCommission

